Первой Нобелевской премии по медицине был удостоен Эмиль фон Беринг (1854-1917, Германия) «за его исследования по сывороточной терапии и, в частности, за применение ее против дифтерии». Свои исследования он проводил у Роберта Коха в Коховском институте в Берлине. Беринг со своими сотрудниками Китасато и Вернике в 90-92 гг. XIX века показали, что иммунитет к дифтерии и столбняку зависит от образования антитоксинов, циркулирующих в крови. Он показал, что пассивное введение антитоксической сыворотки может обеспечить выздоровление больных, и этим положил начало сывороточной иммунотерапии разнообразных болезней. В результате он открыл новый путь в области медицинской науки и дал в руки врача победоносное оружие против болезни и смерти.
***
Премия присуждена Роберту Коху (1843-1910, Германия) «за его исследования и открытия, связанные с туберкулезом». Иммунодиагностика с помощью туберкулинового теста и «феномен Коха», который состоит в повышенной кожной реакции на туберкулезные бациллы при введении их в кожу сенсибилизированных животных, сыграли решающую роль в изучении механизмов клеточного иммунитета.
***
Премию этого года разделили Илья Ильич Мечников (1845-1916, Россия) и Пауль Эрлих (1854-1915, Германия), получившие ее в качестве «признания их работ по иммунитету». И.И. Мечников — первый ученый, который сознательно и целеустремленно, посредством экспериментов, исследовал вопрос столь фундаментальный для иммунитета — какими средствами организм побеждает болезнетворных микроорганизмов. Сначала его эксперименты были ограничены низшими животными. Однако эти исследования открыли путь для теории фагоцитоза. Согласно ей, микроорганизмы разрушаются за счет деятельности некоторых клеток организма. Некоторые виды клеток в организмах людей и животных, а именно фагоциты имеют, в дополнение к другим функциям, задачи удаления болезнетворных микроорганизмов.
Однако, как полагали в начале XX века, кроме уничтожающего бактерии иммунитета имеется также защита другого вида, которая действует против продуктов бактерий. Повреждение, наносимое микроорганизмами, обусловлено ядами, которые эти организмы производят и которые затем распространяются по жидкостям организма. Другой вид иммунитета направлен против именно этой опасности. Лучший пример этого - использование антидифтерийной сыворотки, содержащей определенные вещества, которые действуют как антитоксины против дифтерии. Эти вещества были названы антителами. После того, как иммунитет был достигнут, антитела остаются в тканевых жидкостях организма. Многочисленные вопросы, касающиеся источника антител, их характера и строения, воздействия на токсины и многие другие, поднял в своих экспериментальных и теоретических изысканиях ученый Пауль Эрлих.
***
Премия присуждена Шарлю Рише (1850-1935, Франция) «за исследования по анафилаксии». Вместе со своим коллегой Полем Портье он открыл феномен анафилаксии, обусловленный не токсическими свойствами вводимых веществ, а их действием как антигенов в предварительно сенсибилизированном организме. Тем самым он открыл новое и в то время весьма неожиданное направление в медицине, показав, что «защитные» механизмы иммунитета могут также вызывать развитие болезни.
***
Премия присуждена Жюлю Борде (1870-1961, Бельгия) «за его исследования по иммунитету». В 1898 году он открыл феномен специфического гемолиза. Спустя некоторое время, работая вместе со своим помощником Октавом Жангу, Борде описал феномен фиксации комплемента и диагностические возможности этой реакции.
***
Премии удостоен Карл Ландштейнер (1868-1943, Австрия) «за открытие групп крови у человека». В своих исследованиях по антиэритроцитарным антителам он описал в 1901 году ряд изогемагглютининов человека, которые в наше время составляют систему групп крови AB0. Ландштейнер внес весьма значительный вклад в понимание химических основ взаимодействия между антителами и антигеном, обобщив наблюдения в своей знаменитой книге «Специфичность серологических реакций». Отдавая должное значение своему открытию групп крови, Ландштейнер заметил, что, с его точки зрения, премию 1930 году следовало бы скорее присудить за его исследования по взаимодействию гаптен-антитело.
***
Премия присуждена Максу Тейлеру (1899-1972, Южная Африка) «за разработку вакцины против желтой лихорадки». Тейлер родился в Южной Африке, изучал медицину в Англии и затем в 1922 году переехал в Соединенные Штаты. Именно он показал, что возбудителем желтой лихорадки является фильтрующийся вирус, и описанный им тест защиты мышей (при котором сывороточные антитела в смеси с вирусом защищают мышь от гибели при внутримозговом заражении) стал весьма приемлемым инструментом в эпидемиологических и других исследованиях желтой лихорадки. В конце 30-х годов ему удалось получить аттенуированные штаммы, которые сохраняли свою иммуногенность, но были лишены патогенности и составили основу современных эффективных вакцин против желтой лихорадки.
***
Премия присуждена Даниэлю Бове (1907-1992, Швейцария) «за разработку антигистаминных препаратов для лечения аллергии». Открытие феномена Шульца-Дейла (сокращение кусочка матки под влиянием антигена) позволило моделировать in vitro аллергические реакции и изучать участвующие в них физиологические механизмы. В результате этого было обнаружено, что среди факторов, которые освобождаются при анафилаксии, наиболее важными являются гистамин, серотонин и другие биологически активные вещества. Бове, по-видимому, познакомился с иммунологией и аллергией в период своей работы в Пастеровском институте в Париже, когда он опубликовал много работ о действии различных химических соединений на вегетативную нервную систему. Эти исследования привели его к поиску веществ, способных подавлять действие гистамина; в результате появились лекарственные препараты, оказавшиеся эффективным средством лечения астмы и сенной лихорадки.
***
Премия присуждена Франку Макфарлейну Бернету (1899-1985, Австралия) и Питеру Медавару (1915-1987, Великобритания) «за открытие приобретенной иммунологической толерантности». Медавар показал, что отторжение чужеродного кожного трансплантата подчиняется всем правилам иммунологической специфичности и в основе его лежат такие же механизмы, как и при защите от бактериальных и вирусных инфекций. Последующая работа, которую он провел вместе с рядом учеников, заложила прочную основу для развития трансплантационной иммунобиологии, которая стала важной научной дисциплиной и в дальнейшем обеспечила многие достижения в области клинической трансплантации органов. Бернет опубликовал книгу «Образование антител» (1941 г.). Он утверждал, что способность к иммунологическим реакциям возникает на сравнительно поздних стадиях эмбрионального развития и при этом происходит запоминание существующих маркеров «своего» у антигенов, присутствующих в данный момент. Организм в последующем приобретает к ним толерантность и не способен отвечать на них иммунологической реакцией. Все антигены, которые не запомнились, будут восприниматься как «не свои» и смогут в дальнейшем вызывать иммунный ответ. Было высказано предположение, что любой антиген, введенный в течение этого критического периода развития, будет затем восприниматься как свой и вызывать толерантность, в результате чего не сможет в дальнейшем активировать иммунную систему. Эти идеи были далее развиты Бернетом в его клонально-селекционной теории образования антител. Предположения Бернета были подвергнуты экспериментальной проверке в исследованиях Медавара, который в 1953 году на мышах чистых линий получил четкое подтверждение гипотезы Бернета, описав феномен, которому Медавар дал название приобретенной иммунологической толерантности.
***
Премия присуждена Джералду М. Эдельману (1929, США) и Роднёю Р. Портеру (1917-1985, Великобритания) «за их исследования по химической структуре антител». Данные А. Тизелиуса и Э.А. Кэбета о том, что антитела являются гамма-глобулинами с большой молекулярной массой, показали, насколько трудным будет установить химическую основу для их первичной иммунологической специфичности и их вторичных биологических свойств. Расщепляя молекулу антитела ферментами, Портер стремился получить более мелкие активные фрагменты, ив 1958 году он добился успеха. При расщеплении папаином из молекулы антитела удалось выделить три составляющие ее фрагмента: два идентичных Fab-фрагмента и третий Fc-фрагмент. Fab-фрагмент содержит антительные участки связывания антигена, а Fc обеспечивает вторичную биологическую активность антитела. Затем Эдельман показал, что, восстанавливая гомогенный белок, можно выделить составляющие его полипептидные цепи — легкие (L) и тяжелые (Н). Далее Портер показал, что молекула иммуноглобулина образована двумя легкими и двумя тяжелыми цепями. На основе этих данных была создана теперь уже общепризнанная модель строения IgG. Выделение из иммуноглобулина цепей и фрагментов открыло возможность изучения их аминокислотной последовательности; такие исследования стали проводиться с большой интенсивностью в лабораториях Портера, Эдельмана и многих других исследователей. В результате этих работ было установлено, что в L- и Н-цепях существуют как вариабельные, так и константные области, и появилась возможность сравнивать первичную структуру антител разной специфичности и даже разных видов животных. Наконец в 1969 г. Эдельман и его сотрудники сумели полностью расшифровать первичную структуру одной молекулы иммуноглобулина, что позволило не только установить положение антигенсвязывающего участка, но также локализовать те «домены», которые обеспечивают вторичные биологические функции антител.
***
Премия по медицине присуждена Розалине Ялоу (1921, США) «за разработку метода радиоиммунологического анализа пептидных гормонов». Гормоны — химические вещества с очень большим диапазоном различного действия при концентрациях, которые в течение долгого времени казались настолько низкими, что считались следовыми. Розалина Ялоу работала над методологией измерения содержания гормонов в крови при очень низких концентрациях. Розалина Ялоу и ее коллега Соломон Берсон обнаружили случайно, что белковый гормон инсулин после введения в кровь человека, больного сахарным диабетом, способствует образованию антител против инсулина. Через пару лет интенсивной работы они представили в 1960 году метод для определения белковых гормонов в крови, принцип которого был основан на способности этих гормонов вызывать продукцию антител. В результате смешивания в пробирке известного количества радиоактивного инсулина с известным количеством антител против инсулина образуются комплексы инсулин-антитело с частью радиоактивного инсулина. Впоследствии, если добавить к этой смеси небольшое количество крови, которая содержит инсулин, инсулин крови замещает некоторую часть радиоактивного инсулина в комплексах с антителами. Чем выше концентрация инсулина находится в пробе крови, тем большее количество радиоактивного инсулина будет отделено от антител. Количество радиоактивного инсулина, удаленного из комплексов, может легко быть установлено, тем самым указывая точную величину содержания исследуемого инсулина в пробе крови. Таким образом метод Розалины Ялоу и его последующие модификации позволили применять его далеко за рамками ее собственной области исследования.
***
Премия по медицине присуждена Баруху Бенацеррафу (1920, Венесуэла), Жану Доссе (1916, Франция) и Джорджу Д. Снеллу (1903-1996, США) «за их работу по генетически детерминированным структурам клеточной поверхности, регулирующим иммунологические реакции». В 1965 году Доссе и его сотрудники описали систему примерно из 10 антигенов человека, закодированных в главном комплексе гистосовместимости, который включает «сублокусы», определяющие ограниченное число антигенных аллелей.
***
Нобелевская премия по медицине присуждена Нильсу К. Ерне (1911-1994, Дания), Джорджу Г.Ф. Кёлеру (1946- 1995, Германия) и Цезарю Мильштейну (1927-2002, Аргентина) «за теории, касающиеся специфичности в иммунной системе, и открытие принципов получения моноклональных антител». Ерне — известный теоретик в области иммунологии — выдвинул предложение, что способность иммунной системы идентифицировать несметное число антигенов была как-то предопределена еще до первого поступления антигена. А при поступлении антигена происходит некий выбор в пользу нужных антител и увеличивается их наработка. Теория Ерне сильно контрастировала с преобладающими в то время теориями, но она быстро была поддержана и расширена.
Отправной точкой для следующей важной теории Ерне в 1971 году явилась особенность иммунной системы одного индивидуума отторгать ткань другого. Ерне предполагал, что за эти реакции ответственны молекулы, названные им антигенами трансплантации. По его предположению, они должны иметь определенные функции в здоровом организме, не подвергшемуся трансплантации. Одной из функций этих молекул могла быть активация и запуск сигналов об увеличении количества клеток иммунной системы, участвующих в защите тканей организма. Специальные органы, например тимус, могли были приняты в качестве «оранжереи» и «университета» для этих клеток. В этой теории Ерне предсказывал феномен образования специфичности для клеточного звена иммунитета.
В третьей теории в 1974 году Нильс Ерне представил предполагаемую картину устройства иммунной системы. Иммунная система уподобляется гигантскому компьютеру, где осуществляется постоянная связь и регулирование между различными ее компонентами. Количество клеток в такой системе в организме взрослого человека превышает 10¹² млн.; кроме того, система имеет способность производить миллиарды различных антител с огромным структурным разнообразием. Некоторые антитела, согласно теории, подражают антигенам, против которых нарабатываются другие антитела. И тогда в ответ на проникновение антигена в организм иммунитет срабатывал бы быстрее. Это стало, по сути, предсказанием существования иммунологической памяти. Таким образом, умозрительные теории Ерне позволили современной иммунологии сделать важные шаги по пути новых открытий.
Джордж Келер и Цезарь Мильштейн открыли и развили принципы производства так называемых моноклональных антител с помощью гибридомной технологии. Мильштейн, работал с опухолевыми плазматическими клетками, способными производить антитела. Однако антигенов, с которыми они могли бы связываться, не было найдено. В то же самое время молодой исследователь Келер пытался вырастить нормальные плазматические клетки в условиях in vitro. Только немногие плазматические клетки могли существовать в культуре, и то недолгое время. Тогда Келер, узнав об опытах Мильштейна, обратился к нему с предложением создать гибриды опухолевых клеток с нормальными плазматическими клетками, продуцирующими антитела. Свойства опухолевых клеток позволили бы этим гибридам приобрести большую жизнеспособность для выращивания в культуре.
Ученые смогли решить эту задачу за два года. К этому времени они отработали технику, позволяющую им по желанию получить гибридные клетки, производящие нужные антитела. Эти клетки имели высокую жизнеспособность, чтобы произвести антитела в высоком количестве. Ученые назвали эти гибридные клетки гибридомами, а поскольку все клетки в гибридомной культуре происходят от одной гибридной клетки, антитела были названы моноклональными.
***
Премия по медицине присуждена Сусумо Тонегава (1939, Япония) «за открытие генетических принципов генерации антител». Благодаря исследованиям Тонегавы стали ясны молекулярно-биологические механизмы формирования огромного разнообразия активных центров антител, а позднее и T-клеточных рецепторов.
***
Премия по медицине и физиологии присуждена Жозефу Е. Марри (1919, США) и Е. Донналлу Томасу (1920, США) «за открытия в области трансплантологии органов и клеток». Они создали основы техники пересадки клеток костного мозга при лейкозах и при пересадке таких органов, как почка, используя подбор донора и реципиента по антигенам гистосовместимости и применяя созданные ими цитотоксические препараты.
***
Премия по медицине присуждена Питеру К. Догерти (1940, Австралия) и Рольфу М. Зинкернагелю (1944, Швейцария) «за их открытия в области специфичности клеточного иммунного ответа». Оба работают в США. Основная заслуга лауреатов заключается в расшифровке механизмов узнавания антигенов T- и B-лимфоцитами. Этот механизм был назван когнатным, или сцепленным, распознаванием.
***
Премия по медицине и физиологии присуждена Лиланду Г. Хартвеллу (1939, США), Р. Тимоти Ханту (1943, Великобритания) и Полю М. Нёрсу (1949, Великобритания) «за открытие ключевых регуляторов клеточного цикла». Лауреаты обнаружили ключевые регуляторы клеточного цикла — циклин-зависимые киназы (CDK) и циклины. Вместе эти два компонента образуют фермент, в котором CDK является как бы «молекулярным двигателем», проводящим клетку через клеточный цикл, изменяя структуру и функцию других белков в клетке. Циклин — это главный «переключатель», который запускает и останавливает «CDK-двигатель». Были обнаружены гены, ответственные за деление клетки, названные CDC-гены. Один из этих генов, CDC28, контролирует инициацию клеточного цикла. Ими была также сформулирована концепция «сверочных точек», которые гарантируют, что события клеточного цикла идут правильно. Дефекты сверочных точек рассматривается в качестве одной из причин преобразования нормальных клеток в раковые.
***
Премия по медицине и физиологии присуждена Сиднею Бреннеру (1927, Великобритания), г. Роберту Хорвитцу (1947, США) и Джону Е. Сулстону (1942, Великобритания) «за открытие генетической регуляции развития органов и программированной клеточной смерти». Эти исследования были выполнены на нематоде Caenorhabditis elegans. Ученые идентифицировали несколько генов, ответственных за программированную гибель клеток. Кроме того, они показали, что в человеческих клетках имеются гомологи этих генов.
Литература: Новиков В. В., Добротина Н. А., Бабаев А. А. Иммунология: Учебное пособие. Нижний Новгород: Издательство ННГУ им. Н. И. Лобачевского, 2004
Последнее обновление страницы: 19 февраля 2007 E-mail: vira-ss@narod.ru